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Abstract. Methane is a powerful greenhouse gas produced in wetland environments via 14 

microbial action in anaerobic conditions. If the location and extent of wetlands are unknown, 15 

such as for the Earth many millions of years in the past, a model of wetland fraction is 16 

required in order to calculate methane emissions and thus help reduce uncertainty in the 17 

understanding of past warm greenhouse climates. Here we present an algorithm for predicting 18 

inundated wetland fraction for use in calculating wetland methane emission fluxes in deep 19 

time paleoclimate simulations. The algorithm determines, for each grid cell in a given 20 

paleoclimate simulation, the wetland fraction  predicted by a nearest neighbours search of 21 

modern day data in a space described by a set of environmental, climate and vegetation 22 

variables. To explore this approach, we first test it for a modern day climate with variables 23 

obtained from observations and then for an Eocene climate with variables derived from a 24 

fully coupled global climate model (HadCM3BL-M2.2). Two independent dynamic 25 

vegetation models were used to provide two sets of equivalent vegetation variables which 26 

yielded two different wetland predictions. As a first test the method, using both vegetation 27 

models, satisfactorily reproduces modern data wetland fraction at a course grid resolution, 28 

similar to those used in paleoclimate simulations. We then applied the method to an early 29 

Eocene climate, testing its outputs against the locations of Eocene coal deposits. We predict 30 

global mean monthly wetland fraction area for the early Eocene of 8 to 10 × 106 km2 with 31 

corresponding total annual methane flux of 656 to 909 Tg CH4 year-1, depending on which of 32 

two different dynamic global vegetation models are used to model wetland fraction  and 33 

methane emission rates. Both values are significantly higher than estimates for the modern-34 

day of 4 × 106 km2 and around 190 Tg CH4 year-1 (Poulter et. al. 2017, Melton et. al., 2013).  35 

 36 

1 Introduction 37 

Methane (CH4) is a powerful greenhouse gas. As well as absorbing infrared radiation from 38 

the Earth’s surface it also contributes to additional indirect warming through its 39 
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photochemistry and oxidation to CO2 in the atmosphere (IPCC 2013). Therefore, Earth 40 

system models used to reconstruct ancient climate or develop future climate scenarios must 41 

either assume atmospheric methane concentrations as a boundary condition and/or 42 

incorporate dynamic methane fluxes from natural sources (Beerling et al. 2011). The main 43 

natural source of methane is wetland environments via microbial action in anaerobic 44 

conditions (Whiticar, 1999), but methane fluxes from wetlands are also modulated by 45 

climatic factors such as temperature (Westermann, 1992). Therefore, in order to model fluxes 46 

of methane to the atmosphere both the extent and locations of wetlands need to be known. 47 

For modern day, recent past and near future scenarios, maps of observed wetland extent 48 

(Prigent et al. 2007, Papa et al. 2010, Schroeder et al., 2015, Poulter et al, 2017) can be used 49 

or wetland extent can be calculated at a sub-grid level from fine resolution topographical data 50 

(as in the TOPMODEL approach of Beven and Kirkby (1979), Lu and Zhuang (2012), 51 

Stocker et al. (2014), Lu et al. (2016)), as wetlands only form where the ground is relatively 52 

flat. 53 

For the study of deep time paleoclimates (many millions of years in the past) there are no 54 

direct observations of wetland extent, and the topography is only known on relatively coarse 55 

resolutions of around 0.5 ° at best. Therefore, any model calculation of wetland extent must 56 

either rely on using approximate knowledge of the topography or not rely on the topography 57 

at all. Previous studies (Beerling et al., 2011, Valdes et al., 2005) classified grid cells as either 58 

producing or not producing methane, based on either: i) a month being within a defined melt 59 

season, for grid cells where mean monthly temperature drops below 0 °C at some point in the 60 

year; or ii) precipitation being greater than evapotranspiration. They then scaled emissions by 61 

empirically derived functions of the variance or standard deviation of orography, at the best 62 

resolution available. The scaling effectively reduces methane emission rates in grid cells 63 

where elevation varies significantly and are therefore unlikely to have substantial wetlands 64 

within them, but relies on what may be quite coarse resolution topography not able to resolve 65 

sub-grid scale variations. 66 

In this work we develop a nearest neighbour-based algorithm to predict the fraction of a 67 

specified area that is wetland (FW). We base this on modern day reference data set of  FW 68 

and corresponding environmental variables, empirically associating the FW observations with 69 

corresponding observed climate data and vegetation data calculated using one of two 70 

dynamic global vegetation models (DGVMs).  We demonstrate its application by predicting 71 

FW and CH4 fluxes for an early Eocene (52 Ma) model climate, an interval of greenhouse 72 

warming (Zachos et al., 2008) when sedimentary records indicate the existence of large areas 73 

of wetlands (Sloan et al., 1992, Beerling et al., 2009). For the Eocene, the same climate 74 

variables are obtained from a fully coupled global climate model and vegetation variables are 75 

derived from the same DGVMs.  We then predict FW for the Eocene by analysis and 76 

comparison to the modern-day reference data. We note that different reference sets, 77 

vegetation models or climate models will likely yield different results and these should be 78 

explored in future work, but our aim here is to demonstrate this approach and its potential 79 

rather than to produce a model-model intercomparson.  80 

Firstly, we describe modern day wetland data  at 0.5° spatial resolution and a monthly time 81 

step for a mean modern day year, along with climate and vegetation data which we later use 82 

as a reference data set. We then describe two test data sets at lower spatial resolution, 83 
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equivalent to that used in paleoclimate models, again for a single year. The first of these is for 84 

the modern day and derived by interpolation of the reference data and the second is derived 85 

from a paleoclimate model of the early Eocene. We briefly describe unsuccessful attempts to 86 

model FW before moving on to the Nearest Neighbours method we found to be successful. 87 

We also describe the model used to calculate wetland methane emissions. We then discuss 88 

the model results for the modern day test data set and then Early Eocene climate. For the 89 

modern day test data set the nearest neighbour method should yield strong agreement, since it 90 

is simply a downscaled version of the reference data; these results, therefore, serve to 91 

demonstrate whether or not a generalised form of the method can be successfully applied to 92 

prediction of FW for a climate very different to the modern day. We then apply this method 93 

to prediction of FW for the Eocene, and show that we can tune it by using the locations of 94 

coal deposits as wetland proxies.  95 

 96 

2 Data and Methods 97 

2.1 Modern day reference data 98 

We use a  modern-day reference data set of observed FW with corresponding environmental 99 

data to develop an algorithm for the prediction of FW in the past, i.e. we assume that there 100 

exists a relationship between FW and the environmental variables compiled in the reference 101 

data and then apply that relationship to predicting FW in the past. We use the recently 102 

developed SWAMPS-GLWD (Poulter et al., 2017), which improves on the Surface Water 103 

Microwave Product Series (SWAMPS) (Schroeder et al., 2015) by adding Global Lakes and 104 

Wetlands Database (GLWD) (Lehner and Doll 2004) data, correcting the SWAMPS dataset 105 

in regions where this satellite derived dataset fails to detect water beneath closed canopies. 106 

We calculated the average monthly FW at each 0.5° × 0.5° grid cell for the years 2000 to 107 

2012 on a monthly time step to give a modern-day FW (FWobs; annual max shown in Figure 108 

1). Corresponding climate data on the same spatial and temporal resolution were obtained 109 

from CRU-NCEP v4.0 (Wei et al. 2014) and averaged to give monthly values for a mean 110 

modern-day year over the same time interval. The climate data for this mean year were then 111 

used to drive two DGVMs: the Sheffield Dynamic Global Vegetation Model (SDGVM) 112 

(Woodward et al., 1995; Beerling and Woodward, 2001) and the Lund-Postdam-Jenna model 113 

(LPJ) (Wania et al., 2009) to produce corresponding vegetation data. The combination of 114 

these yielded a reference data set of FW, climate (temperature and precipitation) and 115 

vegetation (leaf area index, net primary productivity, transpiration, evapotranspiration, soil 116 

water content and surface runoff) variables (either SDGVM or LPJ) for a set of 0.5° × 0.5° 117 

spatial and monthly temporal resolution sites for a single modern-day average year. To ensure 118 

that wetlands in areas dominated by agriculture or where one of our vegetation models, 119 

SDGVM, predicts bare land, did not bias our FW predictions, such grid cells were removed 120 

from the reference data. For the latter, this was done simply by removing those grid cells that 121 

SDGVM predicted to be bare land. For the former, we removed those that were 50 % or 122 

more, by cover, classed as cultivated and managed or mosaic cropland (Global Land Cover 123 

2000 database, 2003). 124 

Many of the methods that can be used to analyse the reference data and predict FW require 125 

that the data are scaled, so that each variable covers a similar range of values. Therefore, we 126 
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scaled the values of each environmental variable, X, using their mean, µx, and standard 127 

deviation, σx, i.e. for a given grid cell, J, each variable was scaled as: 128 

𝑋′ (𝐽) =
𝑋(𝐽)− µ𝑥

𝜎𝑥
           (1) 129 

This scales all variables such that they have mean of 0 and standard deviation 1. 130 

2.2 Test data sets 131 

A modern-day test set was made by interpolating the reference climate data to 2.5° × 3.75°, 132 

the spatial resolution often used for paleoclimate models.  The DGVMs simulations were 133 

conducted on this interpolated data to yield the vegetation outputs. All climate and vegetation 134 

variables were scaled in the same way as the reference data, using the means and standard 135 

deviations of the reference data. The palaeoclimatic assessment of our model was performed 136 

using an early Eocene three dimensional fully dynamic coupled ocean-atmosphere global 137 

climate model HadCM3BL-M2.2 (Valdes et al., 2017), on a 2.5° latitude by 3.75° longitude 138 

grid and at a monthly time step for a single year. To simulate the early Eocene a Ypresian 139 

paleogeography and high CO2 (4x modern; 1120 ppm; Agnostous et al., 2016) was used. 140 

SDGVM and LPJ were both run with these model-simulated climate data to produce the 141 

vegetation variables required, as was done for the reference data set, whereas temperature and 142 

precipitation were derived directly from the climate model. All variables were again scaled 143 

using the means and standard deviations of the reference data. Therefore, for each climate, 144 

modern day and early Eocene, we have two test data sets for a mean year on a monthly time 145 

step, at 2.5° x 3.75° spatial resolution, both with the same climate data, one with SDGVM 146 

vegetation data and one with LPJ vegetation data. Predictions for each test data set were 147 

made with the corresponding vegetation model’s reference data set. 148 

 149 

2.3 Initial unsuccessful models of wetland fraction 150 

Before discussing the model we employed to predict paleoclimate FW, it is useful to describe 151 

briefly other strategies that we attempted but that did not yield robust predictions when 152 

evaluated against modern-day data. The first of these was to examine FW vs individual 153 

environmental variables graphically from the reference data, to ascertain if we could define 154 

ranges for those variables that corresponded to predominantly low or high FW; this is similar 155 

to the approach of Shindell et al. (2004), who proposed threshold values of standard deviation 156 

of topography, ground temperature, ground wetness and downward shortwave flux for 157 

wetland development.  However, this proved unsuccessful, revealing only the rather obvious 158 

relationship that wetlands do not usually occur when mean monthly temperature is below 0 159 

°C. Although we expected to identify relationships for FW with other environmental 160 

variables (i.e. ground wetness), none were found. This is due to the combined effects of 161 

wetland occurrence being the function of multiple factors and the fact that most grid cells 162 

have FW ≈ 0 for all months of the year and the number with significantly non-zero FW is 163 

quite small. Therefore, environmental variables associated with high values of FW also tend 164 

to be associated with FW ≈ 0. Poor correlation of FW with environmental variables is also 165 

due to the important control exerted by the topography; regardless of climate, wetlands 166 

cannot form in landscapes where excess water flows away rather than remaining in situ. 167 
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Collectively, these factors caused significant overlap in the range of environmental variables 168 

associated with both low and high FW.  169 

Another approach was a multiple linear regression using the reference data in order to derive 170 

an equation for FW in terms of linear functions of multiple environmental variables. 171 

However, this yielded equations that predicted a widespread occurrence of very low FW, 172 

including those areas where FWobs is very high either seasonally or throughout the year. 173 

Similarly, poor predictive models were obtained whether derived for all sites or just those 174 

restricted to specific plant functional types. These outcomes likely occur because linear 175 

regression optimises a function by minimising the error between predicted and observed 176 

values. As most grid cells have FW ≈ 0 (Figure 1) the ‘best’ regression equation is one that 177 

predicts FW very low almost everywhere, since in the majority of cases this is quite accurate. 178 

Efforts were made to use other optimisation criteria with customised functions that attempted 179 

to put more weight on predicting high FW correctly at the expense of larger errors where FW 180 

is low. However, these simply over predicted FW. Therefore, we were unable to find any 181 

satisfactory solution based on linear regression. 182 

 183 

2.4 FW predicted by a nearest neighbour search 184 

The reference data set of FW and environmental variables sites on a 0.5° grid at a monthly 185 

time step can be viewed as a set of data points yielding FW at many different locations in a 186 

multi-dimensional space. The eight dimensions of that space are the two climate and six 187 

vegetation variables; temperature, precipitation, leaf area index, net primary productivity, 188 

transpiration, evapotranspiration, soil water content and surface runoff. It is logical to assume 189 

that points close to each other in such a space probably have similar FW. Therefore, if we 190 

have the same environmental variables for a site of unknown FW, we can search the 191 

reference data set for its nearest neighbour, i.e. the point nearest to it. We then predict it 192 

would have the same FW as that for the nearest neighbour in the reference set, as illustrated 193 

schematically below. 194 

1. The set of N environmental variables, suitably scaled, X1, X2 … XN, defines an N-195 

dimensional space  196 

2. The Euclidean distance between two points, I and J, in this space is given by DIJ 197 

 𝐷𝐼𝐽 =  √∑ (𝑋𝑘 (𝐼) −  𝑋𝑘(𝐽))
2

𝑘=1,𝑁        (2) 198 

3. We calculate DIJ for site I of unknown FW and all sites, J , in the reference data set, 199 

for each of which we know FW(J) 200 

4. We find Jmin , the nearest neighbour, that which gives the lowest DIJ 201 

5. We then predict FW (I) = FW (Jmin) 202 

6. If site I is classed as bare land by the DGVM, thereby having all vegetation variables 203 

= 0, we predict FW(I) = 0 204 

This nearest neighbour (NN) method can, if necessary, be extended to a KNN method, 205 

whereby rather than predicting FW based solely on the single nearest neighbour we instead 206 

consider some function of the K nearest neighbours.  207 

 208 
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2.5 Calculating wetland methane emissions 209 

The aim of this study was to derive an algorithm for predicting wetland fraction that can then 210 

be used to calculate methane emissions. For the latter, we use the empirical method described 211 

by Cao et al. (1996), where methane production, mp, and methane oxidation, mo, rates for a 212 

specific grid cell and month are given by: 213 

𝑚𝑝 =  𝑅ℎ 𝑓𝑡            (3) 214 

𝑚𝑜 = 𝑚𝑝 (0.6 + 0.3
𝐺𝑃𝑃

𝐺𝑃𝑃𝑚𝑎𝑥
)         (4) 215 

Where Rh is soil respiration and GPP is gross primary productivity, both obtained from the 216 

respective vegetation model. GPPmax is the maximum value of GPP for that grid cell for any 217 

month of the year. ft is a function that scales for temperature, TMP, in °C.   218 

𝑓𝑡 =  
exp (0.04055 𝑇𝑀𝑃)

3.375
           (5) 219 

This is capped at a maximum value of 1. In principle there would also be a scaling function 220 

for water table depth, but this is defined as 1 for inundated wetlands and we are only 221 

modelling inundated wetland fraction, as that is how the SWAMPS-GLWD FW dataset is 222 

defined. 223 

Methane emission rate, me, is then the difference between methane produced and methane 224 

oxidised, scaled by the wetland fraction for that grid cell and month 225 

𝑚𝑒 =  (𝑚𝑝 − 𝑚𝑜) 𝐹𝑊          (6) 226 

 227 

3 Results and Discussion 228 

3.1 Modern day test data set 229 

The modern-day test set explained in Sect. 2.2 was used as a first, simple, test of the nearest 230 

neighbour algorithm for predicting FW described in Sect. 2.4. Since the modern-day test set 231 

is simply the reference climate data downscaled from 0.5° to the courser HadCM3BL-M2.2 232 

model grid of 2.5° by 3.75° (with vegetation from the DGVMs), we expect the NN algorithm 233 

to yield predicted FW reasonably consistent with a similar downscaling of the SWAMPS-234 

GLWD observed FW. If the NN predicted FW does not achieve this, then that would indicate 235 

that the NN algorithm has failed to predict FW sufficiently accurately. Therefore this test is 236 

primarily designed to indicate that a nearest neighbour algorithm either does or does not have 237 

the potential to be applied to paleoclimates.  238 

Fig. 2 shows maps of seasonal, June–July–August and December–January–February, average 239 

FW from the observed SWAMPS-GLWD data interpolated to 2.5° x 3.75° along with the 240 

predicted FW using either SDGVM or LPJ vegetation data test sets. For both vegetation 241 

models, the predicted FW maps are similar to the observed-interpolated data. Sparse patches 242 

of high FW occur in the tropics, especially the Amazon, throughout the year, and large areas 243 

of seasonal summer wetlands occur in Alaska, Canada and Siberia. The monthly variation of 244 

FW north and south of 30° N, i.e. essentially comparing boreal and tropical wetlands is 245 

shown in Figure 3. We split the global values into these two zones because there are virtually 246 
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no southern hemisphere boreal wetlands, and any division based purely on latitude is 247 

arbitrary. The nearest–neighbour algorithm generates the correct seasonal FW pattern in 248 

boreal regions and, as expected, a relatively constant monthly FW in the tropics. However, 249 

SDGVM consistently underestimates the amount of tropical wetland, whilst LPJ agrees 250 

reasonably well with observations; mean monthly values are 2.11, 1.47 and 1.90 x 106 km2 251 

for the observed, SDGVM and LPJ respectively. This is due to the fact that SDGVM classes 252 

some grid cells as bare land, assumed to have FW = 0 in our algorithm, even though some of 253 

these have non-zero FW in the SWAMPS-GLWD database. LPJ does not classify these grid 254 

cells as bare land but instead treats them as very low amounts of vegetation, therefore 255 

yielding higher global FW that is more consistent with observations. If we exclude from the 256 

observed data those grid cells SDGVM predicts as bare land, then the SDGVM prediction 257 

matches better the observed data and LPJ predictions (Table 1). These results give confidence 258 

that a nearest neighbour algorithm is able to reproduce acceptable FW based on these specific 259 

climate and vegetation variables. 260 

Figure 4 shows the monthly variation in wetland methane emissions for boreal and tropical 261 

areas, calculated using: the observed or predicted FW, both vegetation models’ outputs and 262 

Eq. 3 to 6. The annual methane emissions totals are summarised in Table 2, along with other 263 

recent estimates from model intercomparisons. The annual and monthly zonal methane 264 

emissions are broadly similar for a given vegetation model regardless of whether the 265 

observed or predicted FW is used. SDGVM gives global emissions in line with the other 266 

modelling studies, whereas those from LPJ are somewhat lower. This is mainly due to 267 

differences in tropical emissions. SDGVM yields higher tropical emissions than LPJ but 268 

slightly lower emissions north of 30°N. The main factors influencing the modelled methane 269 

emissions (other than FW) are, according to equations (3) to (5), temperature (which is the 270 

same for both vegetation models), soil respiration (Rh) and gross primary productivity (GPP), 271 

the latter two differing between the two vegetation models. It appears that differences in Rh 272 

lead to the different zonal methane totals. South of 30° N SDGVM and LPJ model annual 273 

total Rh of 46,000 Tg C year-1 and 35,000 Tg C year-1 respectively and, using the same 274 

observed FW, SDGVM and LPJ model annual methane emissions of 123 Tg CH4 year-1 and 275 

69 Tg CH4 year-1 respectively. Therefore, in the tropics the differences in the predicted 276 

methane emissions seem to be due to differences in calculated Rh. North of 30° N both 277 

DGVMs have similar Rh,, 20,000 Tg C year-1 and 22,000 Tg C year-1 respectively for 278 

SDGVM and LPJ, and similar values of methane emissions, 64 Tg CH4 year-1 and 65 Tg CH4 279 

year-1 respectively. 280 

3.2 Early Eocene climate 281 

In the previous section we have shown that a NN method can reproduce FW for a modern 282 

day climate, justifying its application to the early Eocene climate described in section 2.2. 283 

However, as noted at the end of section 2.4 a NN method can be extended to KNN, whereby 284 

we predict FW based on some function of the FW of K nearest neighbours (noting that in 3.1, 285 

NN is simply 1NN, i.e. KNN with K=1). A 1NN algorithm that works well to predict modern 286 

day FW may not work as well for a paleo climate of many millions of years in the past. The 287 

reference data set we use, section 2.1, is very similar to the modern day test set, the latter’s 288 

climate data is simply obtained by interpolating the former to a courser spatial grid. 289 

Therefore, we expected and observed high correlation between modern day FW predicted 290 

from the nearest neighbour in the reference data and the actual FW.  The early Eocene test 291 
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data has significant differences to the reference data since the climate of the early Eocene is 292 

obviously not the same as the modern day. Therefore, it will be harder for a nearest neighbour 293 

based method, searching a space described by climate and vegetation data, to find a nearest 294 

neighbour in the modern day reference data with the correct early Eocene FW, whatever that 295 

may be. It may be that for a high FW early Eocene grid cell the nearest neighbour happens to 296 

have quite low FW and vice versa. Figure.1 shows that FW can change from very high to 297 

almost zero over relatively small distances, for example in the Amazon basin, and that 298 

therefore sites with similar climate and vegetation can have very different FW. The greater 299 

the degree of difference between the early Eocene and the modern day reference data sets, the 300 

more likely it is that the first nearest neighbour does not have the correct FW. 301 

FW calculated for the Early Eocene using the exact same 1NN method as used for the 302 

modern day test set yields values of global monthly mean wetland area of 4.07 x 106 km2 303 

using SDGVM. This is around 33% higher than that for the modern day, 3.00 x 106 km2 from 304 

Table 1.  However, this includes a contribution of 1.53 x106 km2 from areas south of 30° S, 305 

which have an almost negligible contribution for the modern day, so the tropics and northern 306 

Boreal regions actually have lower FW for the Early Eocene. Given that the Early Eocene 307 

was significantly warmer and wetter than the modern day (Carmichael et. al. 2017), we 308 

expect greater wetland area than the modern day. Beerling et al. (2011) reported global 309 

wetland area for an Early Eocene climate using SDGVM; employing their method to our 310 

Early Eocene climate, so as to eliminate differences arising from the specific HadCM3 model 311 

climate and spatial resolution, yields global monthly mean FW area of 16.29 x 106 km2, four 312 

times higher  than the value we would calculate from a 1NN method. Therefore, based on 313 

comparison with both the modern day and a previous Eocene study, it appears that a 1NN 314 

method may be unsuitable for a paleoclimate that is very different to our modern day 315 

reference climate, and we consider KNN with higher values of K. 316 

 317 

3.2.1 maxKNN FW prediction  318 

If indeed the 1NN results are too low then that implies that for some hypothetical high FW 319 

sites from the Early Eocene, the first nearest neighbours in the reference data have very low 320 

FW. Therefore, if we consider higher values of K we may improve our estimate by predicting 321 

FW to be the maximum FW of K nearest neighbours in the reference data. However, 322 

applying this approach will yield  increasingly higher FW as K increases,  requiring a data-323 

constrained optimisation of K. Here we use the distribution of coal deposits in the Eocene, 324 

(Boucot et al., 2013) shown in Figure 5 as such constraints. There are some limitations to this 325 

approach. Coal is formed in wetlands, but can also form in other settings such as lakes; and of 326 

course, these datasets do not document where wetlands were present but the sedimentary 327 

record is missing or has not been published. In the tropics, coal may not have formed in 328 

wetland environments due to a very high rate of carbon cycling and in northern latitudes 329 

subsequent glaciations could have eroded coal deposits away. Moreover, data will be sparse 330 

or non-existent for remote or inaccessible modern day regions, such as under the Antarctic 331 

ice sheet. We also note that precise age and location, especially when comparing to low 332 

resolution climate simulations, could cause disagreement for grid-by-grid comparisons. A 333 

final and critical complication is that FW is a number between 0 and 1, corresponding to the 334 

fraction of a site that is wetland, whereas the coal data is a binary measure: either a grid cell 335 
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has or does not have a coal deposit within it. For all of these reasons, data-model comparisons 336 

must be done cautiously; nonetheless, these data are useful for identifying the most effective 337 

K value for reconstructing likely wetlands.  338 

We defined two functions to assess how well a model FW matched the locations of Eocene 339 

coal deposits. Firstly, f1 is defined as the mean distance, in km, of a coal deposit location to a 340 

grid cell  with model FW predicted to be > 0.2. The choice of 0.2 representing significant FW 341 

is arbitrary but the analysis was repeated with other values and the same conclusions were 342 

found. Secondly, f2 is defined as the mean FW of the grid cell closest to each coal deposit 343 

location, providing that site is within 2 grid points of that coal deposit location, to allow some 344 

leeway with regard to different projected locations of land masses in the early Eocene. Again 345 

the choice of a 2-pixel limit is arbitrary but the analysis was repeated with other limits and 346 

the same conclusions found.  347 

Figure 6 shows the values of f1 and f2 for maxKNN predictions of FW with increasing K for 348 

both the SDGVM and LPJ Early Eocene data sets, compared to a data set of coal deposit 349 

locations. As explained, since FW increases with K then by extension, so does the likelihood 350 

of a site with a coal deposit in or close to it coinciding with a site of significant FW. 351 

Therefore, we do not seek to find the value of K that will give the lowest value of f1 and 352 

highest value of f2 as that would simply be K equal to the size of the entire reference data set. 353 

Instead, we try to find the lowest value of K that gives a “good” prediction for both f1 and f2.  354 

Although “good” is a subjective measure, we define it based on where increases in K result in 355 

marginal improvements in f1 and f2. For both vegetation models as K increases from 1 to 3 f1 356 

decreases significantly and f2 increases significantly. For K > 3 the decrease in f1 levels out 357 

and the increase in f2 also declines. Therefore, we conclude that based on comparison of 358 

predicted FW and locations of coal deposits, K=3 is a reasonable choice to make predictions 359 

for our early Eocene climate via a maxKNN algorithm.   360 

 361 

3.2.2 FW predicted by max3NN  362 

Figure 7 shows annual maximum FW (i.e. for each pixel the highest of the 12 monthly 363 

values) calculated by a max3NN model using SDGVM or LPJ vegetation data, as described 364 

above, with the locations of early Eocene coal deposits also shown. The annual maximum 365 

FW is shown here as FW might only need to be high at some point during the year to give 366 

rise to coal deposits.  The areas of predicted high FW are much larger than for the modern 367 

day (Fig. 1); moreover, at this spatial resolution there are often abrupt changes from low-368 

medium (yellow) to much higher (red) values leading to some isolated patches of high FW. 369 

The approach makes it difficult to interrogate specific factors that drive the increase in 370 

Eocene FW compared to today but given the wetter climate of the Early Eocene higher FW 371 

than the modern day is to be expected. The patchiness is partly a consequence of using annual 372 

maximum FW but also reflects the challenge of predicting a characteristic of a 373 

paleoenvironment based on modern day reference data. Considering zonal total FW and 374 

seasonal average FW maps, i.e. averaging out some of the small scale spatial and temporal 375 

variability, is likely a better approach for understanding ancient methane cycling and these 376 

are discussed later.  377 
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The maps of predicted FW are quite different for the two vegetation models, but the greatest 378 

differences are in areas with very little or no coal deposits, e.g. the tropics, north eastern 379 

North America and Antarctica, making it difficult to critically evaluate them against the data. 380 

However, the monthly variations given by the two vegetation models in total FW (Figure 8) 381 

and methane emissions (Figure 9), for the three latitudinal zones are reasonably similar with 382 

respect to seasonal variations, in that both have their highest values in the summer months for 383 

zones north of 30° N and south of 30° S and no clear seasonal variation in the tropics. In the 384 

tropical zone, predictions of monthly FW area are similar in magnitude for the two vegetation 385 

models, with SDGVM usually predicting higher FW than LPJ. However, in the zone north of 386 

30° N LPJ predicts much higher FW than SDGVM throughout June to October with a peak in 387 

September, whereas SDGVM peaks in May. A similar but less striking pattern occurs for the 388 

zone south of 30°S where again LPJ predicts higher summer FW area than SDGVM. These 389 

differences between the two vegetation models are also evident in maps of seasonal average 390 

predicted FW (Figure 10). In June to August, SDGVM predicts very little wetland area in the 391 

northern hemisphere, whereas LPJ predicts moderate to high FW areas over much of the land 392 

north of around 50° N. In December to February both models predict almost zero FW north 393 

of around 50° N. In the tropics and the southern hemisphere, the two models predict similar 394 

amounts of wetland area, but with SDGVM predicting slightly higher FW overall between 395 

30° S to 30° N and LPJ predicting slightly higher FW south of 30° N.  396 

This differs from the modern day distribution of wetlands (Figure 1) and likely arises from a 397 

variety of method-dependent factors.  First, the coarser resolution leads to more patchy 398 

distribution, as is evident in the modern day data in Figures 1 and 2 (top row) at 0.5° x 0.5° 399 

and 2.5° x 3.75° spatial resolution. This is particularly true for the tropics where wetlands do 400 

occur in small areas. Secondly, the nature of the nearest neighbour algorithm relies on the 401 

principle that a grid cell in a paleoclimate with specific values of environmental variables will 402 

have the same FW as a grid cell in a modern day reference data set with similar values for 403 

those environmental variables; however, other factors influence wetland fraction, such as the 404 

topography. Therefore, a nearest neighbour method predicting FW for a paleoclimate from a 405 

modern day reference data may well have errors for a given grid cell and month. These errors 406 

should reduce when averaged over latitudinal zones or seasonal averages.    407 

The differences between methane emissions from the two vegetation models likely arise from 408 

their respective impacts of soil water balance, via the magnitude of evapotranspiration (EVT) 409 

relative to precipitation (PRC). As the vegetation and climate models are not dynamically 410 

coupled, PRC will be the same in all Eocene simulations, but EVT will vary; thus, vegetation 411 

models that yield elevated EVT in a given grid cell are more likely to yield negative water 412 

balance (PRC-EVT) and low FW. Figure 11 shows the June to August mean PRC-EVT for 413 

SDGVM and LPJ, revealing that it is negative in most places north of 30° N for SDGVM but 414 

is slightly positive or at least much closer to zero for LPJ. Therefore, SDVGM will generally 415 

predict lower FW by identifying modern day nearest neighbours where PRC < EVT and 416 

unlikely to be wetland. The lack of extensive coal deposits in the high northern latitudes, 417 

especially where the LPJ-based approach predicts wetlands, could indicate that the LPJ 418 

approach has over-predicted FW.  However, we caution that this could be a data limitation 419 

issue and future work is required to interrogate the forecasts of these two methods. 420 

Regardless, both models yield broadly similar results on global and zonal terms (Table 3) 421 

indicating that the KNN algorithm could be a useful complementary approach for 422 
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interrogating ancient wetland extent and methane emissions. Global monthly mean FW is 8.5 423 

x 106 km2 and 10.3 x 106 km2 predicted by SDGVM and LPJ respectively. Both of these 424 

values are larger than for the modern day value of 3.0 x 106 km2, as we would have expected. 425 

4. Conclusions 426 

We have presented a nearest neighbour method by which FW can be calculated at sites on the 427 

Earth’s surface for an Eocene paleoclimate based on a set of environmental variables 428 

obtained from climate and vegetation models and comparison of these to a modern day 429 

reference data set. The precise formulation of the nearest neighbour approach was determined 430 

through comparison to locations of Eocene coal deposits and indicated that a max3NN 431 

method was best suited in this case. That should not be taken to imply that a max3NN would 432 

be the best in general; for another paleoclimate a similar analysis to that performed here 433 

would be required to determine the optimum implementation of KNN. The predicted 434 

distributions of FW are much higher than those of today, as we would expect. We have 435 

assessed this using two different global vegetation models, and whilst these do yield some 436 

geographical differences in FW arising from different evapotranspiration estimates, they are 437 

broadly similar when considering zonal means. For both vegetation models, global monthly 438 

mean modelled FW area is less than, around half to two thirds, that of Beerling et al., 2011, 439 

as are the values of the wetland methane emissions. However, our new method does not rely 440 

on the standard deviation of orography, a variable which is only known to a relatively coarse 441 

resolution for deep paleoclimates.  442 

 443 

Code and Data 444 

This study presents a methodology using existing data and climate and vegetation models. 445 

Information relating to these is already included in this article. Code implementing the 446 

maxKNN prediction of FW is included as supplement. 447 
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 571 
Figure 1: Annual maximum observed FW from the SWAMPS-GLWD data set (Poulter 572 

et. al., 2017), mean of 2000 to 2012. Grey shading indicates bare land, as predicted by 573 

SDGVM, or > 50% cultivated (Global Land Cover 2000 database, 2003). 574 
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 576 
Figure 2: Seasonal mean FW.  Observed interpolated to model grid; (a) Jun–Jul–Aug 577 

and (b) Dec–Jan–Feb. 1NN prediction by SDGVM (c) Jun–Jul–Aug and (d) Dec–Jan–578 

Feb.  1NN prediction by LPJ (e) Jun–Jul–Aug and (f) Dec–Jan–Feb. 579 
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 581 
Figure 3: Monthly zonal variations of FW calculated for the mean 2000-12 climate on a 582 

2.5 x 3.75° grid, (a) North of 30° N and (b) South of 30° N. 583 
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  585 
Figure 4: Monthly zonal variations of wetland CH4 calculated from DGVM model data 586 

and observed or modelled FW, for the mean 2000-12 climate on a 2.5 x 3.75 ° grid. (a) 587 

SDGVM North of 30° N, (b) LPJ north of 30° N, (c) SDGVM South of 30° N and (d) 588 

LPJ south of 30° N. 589 
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 591 
Figure 5: Locations of Eocene coal deposits plotted on our Eocene model land mask.□ 592 

indicates an Eocene coal deposit location (Boucot et al., 2013) 593 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-213
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 27 September 2018
c© Author(s) 2018. CC BY 4.0 License.



20 
 

 594 
Figure 6: Variations of statistics for match between Eocene maxKNN predicted high 595 

FW and coal locations (Boucot et al., 2013). f1 is the mean distance of a coal location to 596 

site with FW > 0.2 for model based on (a) SDGVM and (b) LPJ. f2  is the mean FW of 597 

sites within 2 pixels of a coal location for model based on (c) SDGVM and (d) LPJ data. 598 
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 600 
Figure 7: Annual maximum FW calculated by the max3NN method by SDGVM and 601 

LPJ for the  Eocene climate, compared with coal deposit locations 602 
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 604 
Figure 8: Monthly variations of total wetland area calculated for the Eocene climate by 605 

SDGVM and LPJ, for (a) all areas north of 30° N, (b) all areas between 30° S and 30° N 606 

and (c) all areas south of 30° S.  607 
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 608 
Figure 9: Monthly variations of wetland CH4 calculated from predicted FW, for the 609 
Eocene climate by SDGVM and LPJ, for (a) all areas north of 30° N, (b) all areas 610 

between 30° S and 30° N and (c) all areas south of 30° S. 611 
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 612 
Figure 10: Seasonal mean FW predicted for the Eocene climate by SDGVM and LPJ 613 

using the max3NN (a) SDGVM June–July–August, (b) SDGVM December–January–614 

February, (c) LPJ June–July–August, (d) LPJ December–January–February 615 
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 617 
Figure 11: June–July–August mean precipitation minus evapotranspiration for the 618 

Eocene climate, using evapotranspiration from (a) SDGVM or (b) LPJ. 619 
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 > 30° N 

FW 

< 30° N FW Global FW 

Observed 1.84 2.11 3.95 

Observed  

excluding SDGVM bare land 

1.47 1.41 2.88 

SDGVM 1.53 1.47 3.00 

LPJ 1.95 1.90 3.86 

 621 

Table 1: Modern day monthly mean FW area (106 km2), for observed data interpolated 622 

to the 2.5° x 3.75° grid or calculated by vegetation model. 623 
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Model FW data > 30° N CH4 < 30° N CH4 Global CH4 

SDGVM observed 64.32 122.69 187.01 

predicted 57.95 108.63 166.58 

LPJ observed 65.43 68.60 134.03 

predicted 73.11 83.78 156.89 

  

GCP-CH4* observed 0.5°   ~ 184 

WETCHIMP** model specific 51±15 126±31 190±39 

 625 
* GCP-CH4 (Poulter et al., 2017) results are the mean of 11 different methane emission 626 

models with the same observed wetland data as used to produce Figure 1 here. They are 627 

quoted as means over specific ranges of years; 2000–2006 = 184.0 ± 21.1, 2007–2012 = 628 

183.5 ± 23.1, 2012 = 185.7 ± 23.2. As our results are for a single mean 2000–12 year we 629 

therefore only quote an approximate value from this source for comparison. 630 

** WETCHIMP (Melton et al., 2013) results are the mean of 8 different models, 1993-2004, 631 

each of which used their own definition of wetland extent rather than observed data  632 

 633 

Table 2: Modern day annual total wetland CH4  emission (Tg CH4 year-1),  calculated by 634 

vegetation model using either observed FW data (interpolated to the 2.5° x 3.75° grid) 635 

or model predicted FW, compared with other modelling studies. 636 
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 638 

FW model > 30°N 30°S to 30°N < 30°S Global 

SDGVM 2.82 4.11 1.53 8.48 

LPJ 4.84 3.39 2.06 10.29 

     

Table 3: Eocene monthly mean max3NN modelled FW area / 106 km2 639 
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